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Abstract

The use of multiple tests can improve medical decision making. The patient utility maximizing combination of
these tests involves balancing the benefits of correctly treating ill patients and avoiding unnecessary treatment
for healthy individuals against the potential harms of missed diagnoses or inappropriate treatments. We quantify
the incremental net benefit (INB) of single and multiple tests by accounting for a patient’s pre-test probability
of disease and the associated benefits and harms of treatment. We decompose the INB into two components:
one that captures the value of information provided by the test, independent of the cost and possible harm of
testing, and another that accounts for test costs and harm. We examine conjunctive, disjunctive, and majority
aggregation functions, demonstrating their application through examples in prostate cancer, colorectal cancer,
and stable coronary artery disease diagnostics. Using empirical test and cost data, we identify decision boundaries
to determine when conjunctive, disjunctive, majority, or even single tests are optimal, based on a patient’s pre-test
probability of disease and the cost-benefit tradeoff of treatment. In all three cases, we find that the optimal choice
of combined tests depends on both the cost-benefit tradeoff of treatment and the probability of disease. An online
tool that visualizes the INB for combined tests is available at https://optimal-testing.streamlit.app/.
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Introduction

Aggregating results from diagnostic and screening tests helps to improve overall test perfor-
mance.5,8–10,15,16,22,25,28 Different terms are used in the literature to describe various combinations of single
tests. For instance, the protocol that classifies an individual as diseased if all tests return positive results is
referred to as the “all heuristic”9,10, “believe-the-negative rule”24, “conjunctive positivity criterion”1,7,8,
and “orthogonal testing”14. In Boolean algebra, this way of aggregating binary signals corresponds to
using the binary AND operator. It implies that once a result is negative, testing stops and the patient
remains untreated. Another aggregation method is referred to as the “any heuristic”9,10 also known as the
“believe-the-positive rule”24 or the “disjunctive positivity criterion”1,7,8. In this protocol, all tests must
return negative results to classify an individual as healthy. Therefore, a single positive test is sufficient for
a diagnosis, which in turn leads to treatment. In Boolean algebra, this aggregation method corresponds to
the binary OR operator.
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During the COVID-19 pandemic, various antigen and antibody tests were developed.6 Similarly, multiple
tests are available across various clinical settings, including diabetes testing4,11, medical imaging3,32,35,
prostate cancer testing29, colorectal cancer testing13, and stable coronary artery disease testing17.
With multiple tests available, how can one efficiently combine them to maximize their informational value?

While efficient combinations are straightforward for two tests, calculations become increasingly complex as
the number of tests increases. An algorithm has been proposed in the literature to combine test results
and identify efficient combinations, using a knapsack-problem formulation.10 Another approach derives
aggregated sensitivities and specificities from individual tests.2 While both approaches can identify the
receiver operating characteristic (ROC) frontier for combining constituent tests, neither provides a criterion
for selecting the optimal combination.
The optimal test along a given ROC curve can be determined by considering the benefits of true positives,

the utility loss from false positives, the cost of treatment, and the probability that the patient actually
has the condition.7 Interestingly, when the harm and cost of testing are taken into account, tests that are
inefficient from an informational perspective (i.e., tests that fall inside the ROC curve) might still be optimal.
Furthermore, the optimal combination of individual tests must also take into account their ranking order.
Tests that are relatively cheap and harmless, and that lead to an early stop in testing due to the chosen
positivity criterion may be prioritized.
To establish criteria for optimally aggregating test results, the remainder of this paper is organized as

follows. The next section provides an overview of key parameters used to mathematically characterize
the value of diagnostic information, as well as the benefits and risks associated with specific treatments.
Subsequently, we derive the incremental net benefit (INB) for different test combinations and show how
selecting the optimal test can be framed as a problem of maximizing this function. We then present three
applications related to prostate cancer, colorectal cancer, and stable coronary artery disease diagnostics. For
all three examples, we identify decision boundaries that determine when different combinations of tests should
be used, depending on the cost-benefit tradeoff of treatment and a patient’s probability of disease. Finally,
we discuss the findings and conclude the paper. An online tool that we developed to visualize the INB for
various combinations of tests and parameters is available at https://optimal-testing.streamlit.app/.

The Incremental Net Benefit of a Test

The Treatment Threshold

We consider a diagnostic risk scenario in which uncertainty pertains to both a patient’s probability of illness
and the potential benefits and harms of treatment. For an ill patient, a decision maker evaluates a treatment’s
monetary net benefit as

b = λqg − cRx , (1)

where qg is the gain of quality-adjusted life years (QALYs), λ is the willingness to pay for a QALY, and cRx

is the treatment cost. In contrast, a healthy patient will incur a monetary utility loss equal to

l = λql + cRx (2)

from the treatment. We now assume that the potential benefits, harms, and costs of treatment vary for each
individual patient. A patient’s cost-benefit tradeoff associated with the treatment is represented by

ρ =
l

l + b
, ∗ (3)

and the uncertainty about the health status is described by the pre-test probability of disease p, which
also differs among patients. Facing a patient, characterized by (p, ρ), the decision maker evaluates the
tradeoff between treatment and no treatment. The patient’s expected utility of treatment is E[U(p, ρ)] =
pb− (1− p)l = b(p− (1− p))

ρ
1− ρ , where we substituted

ρ
1− ρ for l/b after the second equality sign. If this

∗More precisely, ρ/(1− ρ) = l/b quantifies the utility loss of treating a healthy patient relative to the net benefit of treatment
if the patient is ill.
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quantity is positive, treatment is recommended; otherwise, no treatment is preferable. This reasoning leads
to the two treatment thresholds

pRx(ρ) = ρ , (4)

and

ρRx(p) = p , (5)

at which the decision maker is indifferent between treatment and no treatment † A patient should only be
treated if p ≥ pRx or, equivalently, if ρ ≤ ρRx.

The Value of Diagnostic Information

The treatment threshold pRx plays a central role in determining the informational value of a test, as it defines
the decision maker’s choice in the absence of a diagnostic test. For a test with sensitivity Se (true positive
rate) and specificity Sp (true negative rate), and a patient’s characteristics summarized by p and ρ, the value
of diagnostic information is

VI (p, ρ,Se,Sp) =

{
pSe b− (1− p)(1− Sp) l , if 0 ≤ p < pRx

−p (1− Se) b+ (1− p) Sp l , if pRx ≤ p ≤ 1

= b

{
pSe− (1− p)(1− Sp)

ρ
1− ρ , if 0 ≤ p < pRx

−p (1− Se) + (1− p) Sp
ρ

1− ρ , if pRx ≤ p ≤ 1 .

(6)

The function VI (p, ρ,Se,Sp) is the difference between the expected utility of the treatment decision with
and without a test. Without a test, patients with a low probability of disease, p, would remain untreated. In
contrast, with a test, patients with true-positive results receive treatment and gain utility, while those with
false-positive results suffer a utility loss. In expected terms, the utility gain from true-positive outcomes is
pSe b, while the utility loss from false-positive outcomes is (1− p) (1− Sp) l. Without a test, treatment is
the preferred choice for patients with a high p. With a test, true-negative outcomes avoid the utility loss
associated with unnecessary treatment, providing an expected benefit of (1− p) Sp l. However, false-negative
outcomes prevent the patient from receiving the benefits of treatment, resulting in an expected utility loss
of −p (1− Se) b.

Test Thresholds

A test will come with monetary cost, cDx, and potentially involve harm to the patient in case of invasive
testing, represented by λhDx. This leads to the concept of incremental net benefit (INB) of testing, defined
as

INB(p, ρ) = VI(p, ρ,Se,Sp)− cDx − λhDx . (7)

Using the INB, one can formulate the necessary and sufficient conditions for selecting the optimal diagnostic
test. Let I = {1, 2, . . . , n} be the set of all tests available for detecting a specific illness. The necessary
condition for using test i ∈ I is INBi(p, ρ) ≥ 0. The sufficient condition requires INBi(p, ρ) ≥ INBj(p, ρ) for
all i ̸= j ∈ I.
The literature on medical decision-making distinguishes between two approaches to defining the testing

range. Pauker and Kassirer (1980) introduced the concept of a test interval for p, given ρ.21 In contrast,
Vickers and Elkin (2006) developed the decision curve analysis to determine the upper and lower bounds for
ρ, given p.30

†The first treatment threshold was introduced by Pauker and Kassirer (1975)20, while the second was proposed by Vickers and
Elkin (2006)30.
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Figure 1. The incremental net benefits INBi(p) and INBj(p) of two tests as a function of the probability of disease p,
given ρ. The test and test-treatment thresholds are pDx

i
, pDx

j
and pDx

i , pDx
j , respectively. At pDx

ij , the decision maker shifts

from preferring test i over test j.

By setting Eq. (7) equal to zero and solving for p, we obtain the corresponding test and the test-treatment
thresholds

pDx(ρ) =
(1− Sp) l + cDx + λhDx

(1− Sp) l + Se b
=

ρ (1− Sp) + (1− ρ)(cDx + λhDx)/b

ρ (1− Sp) + (1− ρ) Se
, if p < pRx , (8)

pDx(ρ) =
Sp l − cDx − λhDx

Sp l + (1− Se) b
=

ρ Sp− (1− ρ)(cDx + λhDx)/b

ρ Sp + (1− ρ)(1− Se)
, if p ≥ pRx . (9)

The test interval [pDx, pDx] decreases if a test becomes more costly or more harmful. Starting from the INBs
of two tests, i and j ̸= i, the probability of disease at which the decision maker shifts from preferring test i
over test j is

pDx
ij (ρ) =

ρ∆Sp − (1− ρ) (∆cDx + λ∆hDx)/b

ρ∆Sp − (1− ρ)∆Se
, if pDx ≤ p ≤ pDx , (10)

where ∆cDx = cDx
i − cDx

j , ∆Se = Sei − Sej and ∆Sp = Spi − Spj .
In Figure 1, we show the INB of two tests as a function of the probability of disease p. The INB is

linear in p and reaches its maximum value, p J b− cDx, at ρ, where J = Se− (1− Sp) is the Youden index.34

The testing interval is determined by the minimum of the test thresholds and the maximum of the test-
treatment thresholds. In the scenario shown in Figure 1, patients with p < pDx

i
or p ≥ pDx

j should not be

tested. The former should not be treated and the latter undergo direct treatment. For pDx
i

≤ p ≤ pDx
ij , test i

is recommended, and for pDx
ij ≤ p ≤ pDx

j , test j is preferred.
Rather than expressing the thresholds in Eqs. (8)-(10) as a function of a patient’s cost-benefit tradeoff

ρ, we can alternatively derive thresholds for ρ, given a patient’s probability of disease p.30 Setting Eq. (7)
equal to zero and solving for ρ yields a lower and upper bound

ρDx(p) =
p (1− Se) + (cDx + λhDx)/b

p (1− Se) + (1− p) Sp + (cDx + λhDx)/b
, if pRx ≤ p ,

ρDx(p) =
pSe− (cDx + λhDx)/b

pSe + (1− p)(1− Sp)− (cDx + λhDx)/b
, if pRx > p ,

(11)

where a test with sensitivity Se, specificity Sp, cost cDx, and harm hDx can be used.
The width of the test interval [ρDx, ρDx] increases with cDx and hDx. When the test is cost-free and

causes no harm, the upper threshold corresponds to the positive predictive value, and the lower threshold
corresponds to 1 minus the negative predictive value.
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Figure 2. The incremental net benefits INBi(ρ) and INBj(ρ) of two tests as a function of ρ. The lower and upper
threshold were testing is indicated are ρDx

i
, ρDx

j
and ρDx

i , ρDx
j , respectively. The probability of disease is p. At ρDx

ij , the

decision maker shifts from preferring test i over test j.

The treatment threshold at which the decision maker shifts from preferring test i over test j is

ρDx
ij (p) =

p∆Se− (∆cDx + λ∆hDx)/b

p∆Se− (1− p)∆Sp− (∆cDx + λ∆hDx)/b
. (12)

In Figure 2, we show the INB of two tests as a function of a patient’s cost-benefit tradeoff of treatment ρ.
The INB is convex for ρ < p and concave for ρ > p. Given the probability of disease p, and the characteristics
of the tests, including their costs, a testing range [ρDx, ρDx] is defined. Patients for which ρ < ρDx

j
should

be treated without prior testing, while for patients with ρ ≥ ρDx
j , neither testing nor treatment is indicated.

Patients in the range ρDx
j

≤ ρ < ρDx
ji should undergo test j, and those in the range ρDx

ji ≤ ρ < ρDx
i should

receive test i.

Sequencing Tests and Aggregating their Results

With multiple tests available, the decision maker must address the challenge of aggregating test results,
choosing a positivity criterion, and determining the order in which the tests will be conducted. With a
conjunctive positivity approach (using the AND operator in Boolean algebra), additional tests are applied
if and only if the previous test yielded a positive result. In other words, the test sequence stops as soon
as a negative outcome occurs. In contrast, with a disjunctive positivity approach (using the OR operator
in Boolean algebra), further tests are performed if and only if the previous test is negative, meaning that
testing stops as soon as a positive result is obtained.‡ With more than two tests available, a combination of
the AND and OR operators and a majority criterion can be applied. The cost and harm of each individual
test will play a key role in determining the specific sequence of tests.

In deriving our results, we assume that the outcomes of different tests are conditionally independent,
given the disease status. This assumption is commonly used in the medical decision-making literature as it
simplifies the mathematical analysis of aggregated test results. Additionally, manufacturers usually report
performance measures for individual tests without specifying potential dependencies between them. However,
in practice, test results may be correlated.

‡In the following sections, we use the notations x ∧ y and x ∨ y to represent the Boolean operations x AND y and x OR y,
respectively.
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Two Tests

The incremental net benefit of a sequence consisting of two tests, starting with test 1 and using the AND
operator, is

INB1∧2 (p, ρ) = VI (p, ρ,Se1∧2,Sp1∧2)− cDx
1 − λhDx

1 − (p Se1 + (1− p) (1− Sp1)) (c
Dx
2 + λhDx

2 ) , (13)

where Se1∧2 =
∏2

i=1 Sei and Sp1∧2 = 1−
∏2

i=1 (1− Spi). The sequence of tests (i.e., whether to start with
test 1 or test 2) does not affect the value of diagnostic information; it only changes the expected testing cost.
As pSe1 + (1− p)(1− Sp1) is the probability of a positive test outcome from test 1, test 1 has an advantage
over test 2 not only if its cost and potential harm are lower, but also if it is expected to yield fewer (true
and false) positive outcomes. This is because fewer positive outcomes make it less likely that test 2 will be
needed.
The incremental net benefit associated with initiating the test sequence with test 1 and applying the OR

operator is

INB1∨2 (p, ρ) = VI (p, ρ,Se1∨2,Sp1∨2)− cDx
1 − λhDx

1 − (p (1− Se1) + (1− p) Sp1) (c
Dx
2 + λhDx

2 ) , (14)

where Se1∨2 = 1−
∏2

i=1 (1− Sei) and Sp1∨2 =
∏2

i=1 Spi. Again, the test sequence does not affect the value
of diagnostic information. The expected cost and harm of test 2 depends on p (1− Se1) + (1− p) Sp1, the
probability of a negative result from test 1.

Three Tests

For three tests, the incremental net benefit associated with the AND operator is

INB1∧2∧3 (p, ρ) =VI (p, ρ,Se1∧2∧3,Sp1∧2∧3)− cDx
1 − λhDx

1

− (p Se1 + (1− p) (1− Sp1)) (c
Dx
2 + λhDx

2 )

− (p Se1∧2 + (1− p) (1− Sp1∧2)) (c
Dx
3 + λhDx

3 ) ,

(15)

where Se1∧2∧3 =
∏3

i=1 Sei and Sp1∧2∧3 = 1−
∏3

i=1 (1− Spi).
Building on the INB from the two-test case [see Eq. (13)], we incorporate the term pSe1∧2 +

(1− p) (1− Sp1∧2) = pSe1Se2 + (1− p) (1− Sp1) (1− Sp2). This term accounts for the probability of a
positive outcome after two tests, which leads to the use of the third test. As in the two-test examples,
the specific test sequence does not affect the value of information; it only influences the expected cost and
harm of testing.
For the OR operator, we have

INB1∨2∨3 (p, ρ) =VI (p, ρ,Se1∨2∨3,Sp1∨2∨3)− cDx
1 − λhDx

1

− (p (1− Se1) + (1− p) Sp1) (c
Dx
2 + λhDx

2 )

− (p (1− Se1∨2) + (1− p) Sp1∨2) (c
Dx
3 + λhDx

3 ) ,

(16)

where Se1∨2∨3 = 1−
∏3

i=1(1− Sei) and Sp1∨2∨3 =
∏3

i=1 Spi. The probability of a negative outcome after two
tests, which necessitates the use of a third test, is p (1− Se1∨2) + (1− p) Sp1∨2 = p (1− Se1)(1− Se2) + (1−
p) Sp1 Sp2).
With three tests, a test protocol based on the majority criterion offers another combinatorial option. If two

tests yield positive outcomes, the decision maker would choose treatment, whereas two negative outcomes
would lead to no treatment. The third test is required only when the first two tests produce conflicting
results. This approach results in the incremental net benefit

INBM(1,2,3) (p, ρ) =VI
(
p, ρ,SeM(1,2,3),SpM(1,2,3)

)
− cDx

1 − λhDx
1 − cDx

2 − λhDx
2

− [p (Se1 (1− Se2) + (1− Se1) Se2) + (1− p) (Sp1 (1− Sp2) + (1− Sp1) Sp2)] (c
Dx
3 + λhDx

3 )

(17)
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where
SeM(1,2,3) = Se1Se2 + Se1Se3 + Se2Se3 − 2Se1Se2Se3 (18)

and
SpM(1,2,3) = Sp1Sp2 + Sp1Sp3 + Sp2Sp3 − 2Sp1Sp2Sp3 . (19)

AND and OR Aggregation of the Results of n Tests

Generalizing the previous equations to cases with n > 3 tests is straightforward. Adding another test affects
the overall informational value of the test protocol, increases the expected cost including a potential harm
in case of an invasive test, and may induce a further test, depending on the chosen positivity criterion. The
incremental net benefit of a combined n-test, when using the AND operator, is

INB1∧···∧n (p, ρ) =VI (p, ρ,Se1∧···∧n,Sp1∧···∧n)− cDx
1 − λhDx

1

−
n−1∑
i=2

[p (1− Se1∧···∧i) + (1− p) Sp1∧···∧i] (c
Dx
i + λhDx

i ) ,
(20)

where

Se1∧···∧n =

n∏
i=1

Sei and Sp1∧···∧n = 1−
n∏

i=1

(1− Spi) . (21)

With the AND operator, overall sensitivity decreases, while overall specificity increases with n. In
environments where the probability of disease is low, increasing the number of tests is appealing. A
high specificity decreases the expected number of false positives, which is advantageous both from the
informational and the cost perspectives. At the same time, applying one more test always implies an
additional cost.
With the OR operator, we have

INB1∨···∨n (p, ρ) =VI (p, ρ,Se1∨···∨n,Sp1∨···∨n)− cDx
1 − λhDx

1

−
n−1∑
i=2

[p(1− Se1∨···∨i) + (1− p)Sp1∨···∨i] (c
Dx
i + λhDx

i ) ,
(22)

where

Se1∨···∨n = 1−
n∏

i=1

(1− Sei) and Sp1∨···∨n =

n∏
i=1

Spi . (23)

With the OR operator, overall sensitivity increases, while overall specificity decreases with n. If the
probability of illness is high, decision makers will be inclined to increase the number of tests because a high
sensitivity decreases the expected number of false negatives which is warranted both from the informational
and the cost perspectives.
As shown in Eqs. (13)–(17), the value of diagnostic information does not depend on the order in which the

n tests are conducted. Low-cost tests, when performed earlier in the sequence, are associated with a lower
INB. Under the AND operator, tests that decrease the probability of positive outcomes are preferred due to
their lower INB. In contrast, under the OR operator, tests that reduce the probability of negative outcomes
are more likely to be prioritized earlier in the sequence.
For test strategies using the majority rule, we choose not to present the INB, overall sensitivity, or

specificity when n > 3 and an odd number, as the corresponding mathematical expressions become very
lengthy and their derivation is much more complex than for the AND and OR functions.

Determining the Optimal Test

We use S to denote a set of available single and combined tests. Given a patient’s pre-test probability of
disease p and cost-benefit tradeoff ρ, the decision maker will select the test

k∗ = argmax
k∈S

INBk(p, ρ) . (24)
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For the region in the (p, ρ) space where testing is indicated, the decision maker’s choice can also be described
using the thresholds defined in the section “The Incremental Net Benefit of a Test”. For the set S of available
single and combined tests, we have

pDx
min

(ρ) = min
k∈S

(
pDx
k

(ρ)
)
= ρDx,−1

max (p) (25)

and

pDx
max(ρ) = max

k∈S

(
pDx
k (ρ)

)
= ρDx,−1

min
(p) , (26)

where ρDx
min

(p) = mink∈S
(
ρDx
k

(p)
)

and ρDx
max(p) = maxk∈S

(
ρDx
k (p)

)
. We use the notation ρDx,−1

max (p) and

ρDx,−1
min

(p) to indicate the inverse of pDx
max(ρ) and pDx

min
(ρ), respectively.

This brings us to the following decision rules for a patient characterized by (p, ρ):

• Do not test or treat if p < pDx
min

(ρ) or, equivalently, ρ > ρDx
max

(p)

• Test if pDx
min

(ρ) ≤ p ≤ pDx
max(ρ) or, equivalently, ρ

Dx
min

(p) ≤ ρ ≤ ρDx
max(p)

• Treat without testing if p > pDx
max(ρ) or, equivalently, ρ < ρDx

min
(p)

Within the region where testing is indicated, the optimal transition threshold can be determined by
comparing all pairs pDx

ij (ρ) and ρDx
ij (p) . However, this approach requires quadratic memory and runtime, as

every pair of tests must be evaluated, making it computationally complex. A more efficient method, linear
in the number of tests, involves computing the envelope of INBk(p, ρ) and directly determining the optimal
test and corresponding transition thresholds between tests using Eq. (24).

Applications

We now turn to three applications to illustrate how the choice of the optimal test protocol varies with both
the probability of disease p and the cost-benefit tradeoff of treatment ρ.

The first two examples focus on prostate cancer and colorectal cancer diagnostics, two diseases which
exhibit a low prevalence. The third example considers stable coronary artery disease, a condition with
relatively high prevalence in certain population groups. In all three cases, up to three tests can be combined
using AND, OR, and majority functions.

Prostate Cancer Diagnostics

Prostate-specific antigen (PSA) levels in the blood are used to identify men with prostate cancer. A cutoff of
20% for free-to-total PSA (FT) is applied to define a positive test result. Alternatively, or as a complement,
human kallikrein 2 (hK2) can be used, with a cutoff set at 0.075 ng/mL. For these cutoffs, Vickers et al. (2013)
report SeFT = 0.91 and SpFT = 0.40 for FT, and SehK2 = 0.51 and SphK2 = 0.78 for hK2.29 Although the
Youden index differs only slightly between the two tests (JFT = 0.31 vs. JhK2 = 0.29), FT clearly dominates
HK in terms of the positive likelihood ratio (LR+

FT = 2.32 vs. LR+
hK2 = 1.52). However, FT is inferior to HK

with respect to the negative likelihood ratio (LR−
FT = 0.66 vs. LR−

hK2 = 0.43).§

A third option for prostate cancer testing is transrectal ultrasound (TRUS). For a cutoff of 50 cm3,
Vickers et al. (2013) report SeTRUS = 0.84 and SpTRUS = 0.34. The single tests and combined tests with
varying sequences and positivity criteria result in 33 different test protocols (see Table 1). Since the sequence
of tests does not affect the resulting sensitivity and specificity, these protocols produce 12 distinct pairs of
sensitivity and specificity. From an information-theoretic perspective, nine of these test protocols are efficient,
as they are part of the ROC frontier [see Figure 3(a)].¶ The individual tests FT, hK2, and TRUS, as well
as the combined tests hK2 ∧ TRUS, hK2 ∨ TRUS, and FT ∨ TRUS, are not efficient as they are all weakly
dominated by combinations of neighboring tests.

§LR+ = Se/(1− Sp), LR− = (1− Se)/Sp.
¶If arbitrary AND/OR combinations are allowed, the tests (FT ∧ hK2) ∨ (FT ∧ TRUS) with Se = 0.88 and 1–Sp = 0.44, and
FT ∨ (hK2 ∧ TRUS) with Se = 0.95 and 1–Sp = 0.66, are efficient. As a result, FT ∧ TRUS would become inefficient.
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Figure 3. Prostate cancer diagnostics. (a) The ROC curve for prostate cancer testing. (b) Regions within the (p, ρ) unit
square where different testing protocols are optimal. The sequence of tests does not influence the sensitivity and
specificity values shown in the ROC plot. However, it is crucial in determining the optimal testing protocols illustrated in
panel (b). Because the sequence of the first two tests in the majority protocol does not affect the outcome, the protocols
M(FT, hK2,TRUS) and M(hK2,FT,TRUS) are equivalent in terms of their incremental net benefits.

TRUS involves inserting a probe into a patient’s rectum, which is uncomfortable for the patient and time-
consuming for the physician. Vickers et al. (2013) quote an urologist who stated that he would perform no
more than 10 ultrasound tests to detect cancer if the ultrasound was a perfect test. Assuming that this
urologist anticipated the benefits, harm, and cost of a biopsy, as well as of the cancer treatment for true
positives, we set b = 10(cDx + λhDx). For their study on biopsy outcomes, Vickers et al. (2013) report that
26% of patients were positive for cancer.

For ρRx = p, the informational value of a test is maximized. For ρRx = 0.26, corresponding to a benefit-cost
ratio of 2.85 in treatment, the overall test range for the pre-test probability of disease is [0.12, 0.63] (Table 1).
The first optimal test within this range is the combined test hK2 ∧ FT, with pDx

hK2∧FT
= 0.12. Among all

single and double tests, it has the highest positive likelihood ratio. In the combined test hK2 ∧ FT, hK2
is performed first because its higher specificity compared to FT reduces the probability of positive test
outcomes, and, consequently, decreases the probability that FT will be conducted. At pDx

hK2∧FT,FT = 0.27
(above the treatment threshold), the single FT test begins to offer a greater incremental net benefit than
hK2 ∧ FT. Notice that the single FT test has a very low negative likelihood ratio. At pDx

FT,FT∨hK2 = 0.44,
the combined test FT ∨ hK2, which has the lowest negative likelihood ratio, becomes the optimal testing
protocol. The first test in this sequence is FT, which, due to its high sensitivity, reduces the probability of
both negative test outcomes and the need for the second test. The testing range ends at pDx

FT∨hK2 = 0.63.

With the probability of disease fixed at p = 0.26 and the cost-benefit tradeoff ρ varying, the range
where testing is indicated is [0.11, 0.53]. The lower bound is reached by FT ∨ hK2, and the upper
bound by hK2 ∧ FT. This corresponds to an interval of [8.09, 0.89] for b/l where testing is justified. At
ρDx
FT∨hK2,FT = 0.12, the single test FT becomes optimal. Then, at ρDx

FT,hK2∧FT = 0.26 and for higher values of
ρ, the conjunctively combined test hK2 ∧ FT is indicated. The corresponding benefit-cost ratio for FT and
hK2 ∧ FT is 7.33 and 2.85, respectively.

Figure 3(b) shows the different test regions in the (p, ρ) space. Interestingly, for p > 0.3 and ρ > 0.65,
the conjunctive triple test hK2 ∧ FT ∧ TRUS can be the optimal choice. However, the range of (p, ρ)
combinations, where this is the case, is very narrow. The majority rule becomes a viable option only when
p and ρ are around 0.9, where the benefit-cost ratio of treatment is 9.
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Table 1. Sensitivity and specificity of single and combined tests, as well as their optimal intervals, for prostate cancer
diagnosis. We assume that (cDx

TRUS + λhDx
TRUS)/b = 0.1 and cDx

FT/b = cDx
hK2/b = 0.01.

Test Se Sp LR+ LR− Efficient test Optimal test interval

pDx(ρ = 0.26) ρDx(p = 0.26)
Single tests
FT 0.91 0.40 1.52 0.23 no [0.27, 0.44] [0.12, 0.26]
hK2 0.51 0.78 2.32 0.63 no
TRUS 0.84 0.34 1.27 0.47 no

Combined tests
AND (n = 2)
FT, hK2 0.46 0.87 3.54 0.62 yes [0.12, 0.27] [0.26, 0.53]
hK2, FT 0.46 0.87 3.54 0.62 yes
FT, TRUS 0.76 0.60 1.90 0.40 yes
TRUS, FT 0.76 0.60 1.90 0.40 yes
hK2, TRUS 0.43 0.85 2.87 0.67 no
TRUS, hK2 0.43 0.85 2.87 0.67 no

AND (n = 3) 0.39 0.91 4.33 0.67 yes
FT, hK2, TRUS; FT, TRUS, hK2; hK2, FT, TRUS; hK2, TRUS, FT; TRUS, FT, hK2; TRUS, hK2, FT

OR (n = 2)
FT, hK2 0.96 0.31 1.39 0.13 yes [0.44, 0.63] [0.1, 0.12]
hK2, FT 0.96 0.31 1.39 0.13 yes
FT, TRUS 0.99 0.14 1.15 0.07 no
TRUS, FT 0.99 0.14 1.15 0.07 no
hK2, TRUS 0.92 0.27 1.26 0.30 no
TRUS, hK2 0.92 0.27 1.26 0.30 no

OR (n = 3) 0.99 0.11 1.11 0.09 yes
FT, hK2, TRUS; FT, TRUS, hK2; hK2, FT, TRUS; hK2, TRUS, FT; TRUS, FT, hK2; TRUS, hK2, FT

Majority (n = 3) 0.88 0.55 1.96 0.22 yes
FT, hK2, TRUS; FT, TRUS, hK2; hK2, FT, TRUS; hK2, TRUS, FT; TRUS, FT, hK2; TRUS, hK2, FT

Vickers et al. (2013) emphasize the importance of assessing the patient’s treatment preferences, which
may be determined through a shared decision-making process.29 They suggest that the typical ρ for prostate
cancer biopsy is 20%, corresponding to a benefit-cost ratio of 4. As shown in Figure 3(b), this threshold
roughly translates to a testing interval for p between 0.1 and 0.5.

Germany’s Robert Koch Institute (2022) reports the 10-year probabilities of developing prostate cancer
for men at various ages: below 0.1% for those under 35 years, 0.4% at 45 years, 2.5% at 55 years, 6.2% at
65 years, and 6.7% at 75 years.27 These probabilities are all below the minimum test threshold, indicating
that men should not undergo single or combined tests for prostate cancer. Testing would only be reasonable
for men over 65 if the benefit-cost ratio for biopsies did exceed 10. At this threshold, the combined test
hK2 ∧ FT would be the preferred testing protocol due to its high positive likelihood ratio and low expected
testing costs. A benefit-cost ratio of at least 24 for the biopsy followed cancer treatment would be required
to justify using the single FT test alone.

Colorectal Cancer Diagnostics

According to the Robert Koch Institute, the lifetime risk of developing colorectal cancer is approximately 1
in 25. Below age 65, the incidence rate is under 1%, but it increases to about 2% by age 80.26 Many countries
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have implemented screening programs to detect colorectal cancer in the population. Several diagnostic
options are available. The fecal immunochemical test (FIT) uses antibodies to specifically detect hemoglobin
protein. Multitarget stool DNA testing (MTsDNA) identifies both hemoglobin and certain DNA biomarkers.
Additionally, a colonoscopy examines the rectum, the sigma, and the entire colon using a flexible, lighted tube
called a colonoscope. This device is equipped with a lens for viewing and a tool for tissue removal. While this
invasive test is effective, it carries a perforation rate of 0.04% and, in the event of endoscopic perforation,
a mortality rate of 7.5%.13 With an assumed residual life expectancy of 15 years, the potential harm to
the patient is equivalent to a loss of 0.0006 life years. Additional test characteristics, such as sensitivities
and specificities, are summarized in Table 2, based on data from Pickhardt et al. (2003) and Ladabaum &
Mannalithara (2016).13,23

Table 2. Characteristics of FIT, MTsDNA, and colonoscopy for colorectal cancer diagnosis.

FIT MTsDNA Colonoscopy Treatment
Se 0.733 0.933 0.887
Sp 0.964 0.898 0.796
cDx USD 19 USD 649 USD 1,400
hDx 6× 10−4

cRx USD 75,000
QALY 1.5
b USD 75,000
cDx/b 2.53× 10−4 8.65× 10−3

(cDx + λhDx)/b 1.97× 10−2

Figure 4(a) shows the ROC curve for colorectal cancer diagnostics. Similar to the previous example, for
prostate cancer diagnostics, out of 33 combinations, 12 tests have distinct sensitivities and specificities. Five
of these tests form the ROC frontier. None of the single tests belong to the frontier. Remarkably, the majority
test protocol, with SeM(FIT,MT,COL) = 0.95 and SpM(FIT,MT,COL) = 0.98, is very close to the maximum values
of SeFIT∨MT∨COL = 0.99 and SpFIT∧MT∧COL = 0.99.
Figure 4(b) shows the different test regions in the (p, ρ) space. Compared to the prostate cancer case, the

overall area in which testing is indicated is significantly larger, primarily due to the higher accuracy of the
tests for colorectal cancer. The single FIT test, which is not part of the ROC frontier, is the optimal test for
low values of p and ρ. The combined test FIT ∨MT is optimal for slightly larger values of p. For p > 0.05
and sufficiently large values of ρ, tests with majority aggregation function are optimal, provided that COL
is used as the last test in the sequence. Whether to begin with FIT or MT makes no difference.
Given the low pre-test probability of colorectal cancer, only FIT and conjunctively combined tests with

high specificities (SpFIT∧MT∧COL = 0.999 and SpFIT∧MT = 0.996) appear to be relevant in practice. For
p = 0.02, the triple test is optimal if ρ ≥ 0.3, corresponding to a benefit-cost ratio for cancer treatment of
2.33. The side effects of colonoscopy are negligible, as the probability of requiring COL after a positive
result for both FIT and MT is only 0.017. For a benefit-cost ratio between 2.33 and 20, the combined test
FIT ∧MT, with its higher sensitivity (0.68 vs. 0.61), becomes the optimal choice. For ratios exceeding 20,
FIT alone is optimal, with a sensitivity of 0.73.

Stable Coronary Artery Disease Diagnostics

The European Society of Cardiology (ESC) published guidelines on the management of stable coronary artery
disease (CAD) in 2013.17 These test guidelines differentiate according to a patient’s pre-test probability p
of suffering stable CAD. The ESC task force recommended no testing if p is below 15%, and non-invasive
testing in patients with p between 15% and 85%. If p exceeds 85%, the diagnosis of stable CAD should
be made clinically.‖ This recommendation is based on the observation that non-invasive cardiac tests on
average have a sensitivity and a specificity equal to about 85%. The task force argues that because 15% of

∥ESC refined its guidelines in 2019 and 2024.12,31 By and large, it confirmed the >15%–85% non-invasive testing range for the
pre-test probability, although it narrowed the targeted indication from “stable CAD” to “obstructive CAD”.
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Figure 4. Colorectal cancer diagnostics. (a) The ROC curve for colorectal cancer testing. (b) Regions within the (p, ρ)
unit square where different testing protocols are optimal. The sequence of tests does not influence the sensitivity and
specificity values shown in the ROC plot. However, it is crucial in determining the optimal testing protocols illustrated in
panel (b). Because the sequence of the first two tests in the majority protocol does not affect the outcome, the protocols
M(FIT,MT,COL) and M(MT,FIT,COL) are equivalent in terms of their incremental net benefits.

test results will be incorrect, not using a test at all will lead to fewer incorrect diagnoses for patients with
p < 15% or p > 85%. Apparently, this recommendation does not consider the cost and potential harm of
testing. Furthermore, it implicitly assumes that b = l (i.e., the net utility of treating a patient with stable
CAD is equal to the utility loss of treating a patient without stable CAD).∗∗

Table 3. Characteristics of ETT, SE, MPS, and CCTA for stable CAD diagnosis.

ETT SE MPS CCTA ICA and Rx
Se 0.68 0.867 0.806 0.937
Sp 0.77 0.807 0.747 0.847
cDx USD 100 USD 340 USD 819 USD 394
l USD 55,000
b USD 105,000
cDx/b 9.57× 10−4 3.25× 10−3 7.84× 10−3 9.57× 10−4

In a recent publication, Min et al. (2017) analyzed single and combined test strategies for stable
CAD, taking into account the cost and harm of testing and the benefit and cost of treatment. The
different single tests include exercise treadmill testing (ETT), stress echocardiography (SE), myocardial
perfusion scintigraphy (MPS), coronary computed tomographic angiography (CCTA), and invasive coronary
angiography (ICA).18 The latter, however, is rather costly and comes with a 1% mortality rate. Table 3
shows the parameter values based on data from Min et al. (2017).18 MPS is dominated by SE and CCTA in
terms of sensitivity, specificity, and cost. To calibrate the model, we set b/l = 1.9 such that the test threshold
for ETT is equal to 15%. At the same time, the test-treatment threshold for CCTA becomes 87%, which is
close to the ESC 2013 guidelines at which non-invasive testing is no longer indicated. The average cost of
treatment, estimated by Min et al. (2017), is l = USD 55,000 for patients with a 20% pre-test probability of
stable CAD.

∗∗This can be verified if we set pDx = 0.15, pDx = 0.85 and solve for b/l [see Eqs. (8) and (9)].
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Figure 5. Stable coronary artery disease (CAD) diagnostics. (a) The ROC curve for CAD testing. (b) Regions within the
(p, ρ) unit square where different testing protocols are optimal. The sequence of tests does not influence the sensitivity
and specificity values shown in the ROC plot. However, it is crucial in determining the optimal testing protocols
illustrated in panel (b). Because the sequence of the first two tests in the majority protocol does not affect the outcome,
the protocols M(ETT,CCTA, SE) and M(CCTA,ETT, SE) are equivalent in terms of their incremental net benefits.

According to Figure 5(a), five different test strategies constitute the ROC curve for stable CAD testing. The
single tests SE and ETT are far off the efficient frontier. CCTA is weakly dominated. The highest sensitivity
is achieved with the disjunctive triple test ETT ∨ SE ∨ CCTA, the highest specificity with the conjunctive
triple test ETT ∧ SE ∧ CCTA. The double tests that exclude the inefficient ETT, i.e., SE ∨ CCTA and
SE ∧ CCTA, are also part of the ROC curve, as is the triple test with the majority rule.

Figure 5(b) shows the optimal test protocols, depending on a patient’s probability of stable CAD, p, and
their individual treatment threshold ρ. The single tests ETT and SE are never optimal. CCTA is the best
option if both p and ρ are low, specifically when p < 18% and 1% < ρ < 3%. If ρ < 1%, the disjunctive double
test ETT ∨ CCTA can be the preferred choice. CCTA would only be used if ETT is negative. Despite its
insufficient test accuracy, ETT is used first because it is much less costly than CCTA.
The task force also published testing ranges for individual test options. If the patient is suitable and

the technology as well as the local expertise is available, the ESC guidelines recommend the use of CCTA
in patients at low to intermediate p of 15–50%. Alternatively, for patients with p between 15–85%, stress
imaging testing (SE, MPS, SPECT, PET) is advised. If we follow the task force’s implicit ρ = 0.5, CCTA
is optimal for p up to 50%, although not as a single test, but in conjunctive combination with SE. CCTA
again is optimal for high p, now in disjunctive combination with SE. Changes in ρ, including down to 35%,
which follows from b/l = 1.9, will not change the optimal test strategies as a function of p much. Given the
relatively wide range of p for patients suffering from stable CAD, the majority functions M(ETT,CCTA,SE)
and M(CCTA,ETT,SE) may be optimal, depending on the values of p and ρ. Because the sequence of the
first two tests in the majority protocol does not affect the outcome, the protocols M(ETT,CCTA,SE) and
M(CCTA,ETT,SE) are equivalent in terms of their incremental net benefits.

Discussion

We studied the optimal aggregation of results from multiple diagnostic tests, using the incremental net
benefit (INB) to quantify the tradeoffs between the informational value of the tests, test costs, and the
associated benefits and harms of treatment. An online tool that visualizes the INB for various combined
tests and parameters is available at https://optimal-testing.streamlit.app/.
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Consistent with prior work on aggregating the results of multiple tests2,10, our findings confirm that the
receiver operating characteristic (ROC) curve is useful for evaluating tests based on their informational value.
However, an efficient test (i.e., one located on the ROC frontier) may not be optimal for a specific medical
application, as optimality requires maximizing the INB, which depends on both the test’s informational value
and health-economic factors. Likewise, tests that are inefficient from an informational perspective may still
be optimal due to their low costs and minimal side effects.

Using three application examples focused on prostate cancer, colorectal cancer, and stable coronary artery
disease diagnostics, we identify decision boundaries that determine when different combinations of tests are
optimal, based on a patient’s pre-test probability of disease and their cost-benefit tradeoff from treatment.
For prostate cancer diagnostics, the most relevant tests are the free-to-total prostate-specific antigen (PSA)
test and its combination with the human kallikrein 2 (hK2) marker, where hK2 is performed first, and the
PSA test is conducted if the HK result is positive. However, the benefit-cost ratio of a biopsy in case of
positive test outcomes needs to be 10 to justify the use of the combined double test and even 24 for the
single hK2 test. The implied small range for testing for prostate cancer is due both to the low accuracy
of these tests and the low prevalence of this cancer. For colorectal cancer, the single fecal immunochemical
test and conjunctively combined triple tests are particularly relevant due to the disease’s low prevalence. In
contrast, for stable coronary artery disease, a broader range of tests, including the single coronary computed
tomographic angiography test, conjunctively and disjunctively combined triple tests, and majority protocols,
is practically relevant due to the condition’s wider prevalence range.

Two limitations are worth noting. First, we assume that the outcomes of different tests are conditionally
independent, given the disease status. This assumption is widely used in the medical decision-making
literature as it simplifies the mathematical analysis of aggregated test results. Moreover, manufacturers
typically report performance measures for individual tests without addressing potential dependencies between
them. However, in practice, test results may exhibit correlations. Second, while we used established estimates
for parameters such as test costs and the benefits and harms of treatment, these parameters may vary in
practice due to heterogeneous population effects and other context-specific factors.

Both limitations present valuable opportunities for future research. Quantifying the effects of correlations
between test results and obtaining more accurate estimates for the parameters involved in the INB calculation
can contribute to further improving medical decision-making processes that rely on aggregating results from
multiple tests. Another interesting direction for future work is to study the applicability of our proposed
methods in infectious disease monitoring and management.19,33
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Héctor Bueno, Marc J. Claeys, Norbert Donner-Banzhoff, Cetin Erol, Herbert Frank, Christian Funck-Brentano,
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